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Abstract. A condition implying the strong Iaw of large numbers 
for trajectories of a normal non-contractive operator is given. The 
condition has been described in terms of a spectral measure, in the 
spirit of the well-known theorem of V. F. Gaposhkin. To embrace the 
non-contractive operators we pass from the classical arithmetic (Ce- 
siro) means to the Borel methods of summability. 
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1. INTRODUCTION 

It is well known that, in general, the individual ergodic theorem does not 
hold for an arbitrary normal (even unitary) operator u in L2 (over a probability 
space). It is also well known that the asymptotic behaviour of the Cesaro 

n- 1 means n-' '&=m uk of a normal contraction operator depends heavily on the 
local properties of the spectnun of u near the value one. 

Gaposhkin [4], [5 ]  proved that if E is the spectral measure of a normal 
contraction operator u in L2 (Q, 9, p), then for 6~ L2 the ergodic averages 
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converge almost surely to f(given by the mean ergodic theorem) if and only if 

The Gaposhkin result just formulated gives the condition implying the 
strong law of large numbers for trajectories (u" 0 of a normal operator, so, in 
particular, for weakly stationary sequences (being the trajectories of unitary 
operators). Our intention is to describe some conditions implying the conver- 
gence with probability one for linear transformations of trajectories of non- 
-contractive linear operators. - 

The Gaposhkin proof is based on the analysis of vector-valued functions 
determined by the kernels K, (2) = n-' z;=, 2, lzl < 1, n = 1, 2, . . . It is clear 
that the efficiency of the arithmetic means (Cesiro averages) in this context 
follows from the fact that K,(z) 4 0 for 121 $ 1, z # 1. Obviously, the Cesiro 
means cannot be effective for the kernels K,(z) with z from beyond the disc 
(121 < 1). But there are Borel-type methods of summability which are powerful 
in the theory of analytic continuations and one can expect that they may be 
useful if we try to extend the ergodic theorem to the case of non-contractive 
normal operators. 

Namely, for or > 0 and a sequence x = (c,) of numbers (or vectors), let 
us put 

The function BE(t, x) is called a BE-transform of the sequence x = (5,). If 
lim,,, B,(t, x) = (, then we say that (5,) is summable to 5 by the method B,, 
and then we write en + t(Bh) or BE-lim rn = 5. The results in the paper con- 
cern "discrete" Borel methods, i.e. Ba(t, x) is taken only for t = 1, 2, . . . though 
in the proofs we often consider the transform B,(t, x) with continuous pa- 
rameter. We take only a =  2-', v = l ,  2, . . . In the sequel we shall need the 
following transformation W: 

defined for continuous functions f: (0, m) + R (cf. 171, p. 140). 
The transformation W is regular in the sense that lim,,, f (u) = fl  implies 

lim,,, W(f) (t) = 8. Moreover, for the Borel transforms B, (t, x )  with continu- 
ous parameter t > 0 we have 

for k = 0, 1, . . . , assuming that the Borel transforms B2 - k and B, - ck + are well 
defined for x = (ck) (cf. [7], p. 153). 
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2. MAIN RESULT 

The main goal of this paper is to extend the Gaposhkin idea to non- 
-contractive operators by passing from the Ceslro means to the Borel methods 
of summability. 

Let us begin with a few general remarks. In comparison with the Cesaro 
averages (C, I), the Borel methods of summability are very eficient for rapidly 
divergent sequences, like (zn) with large 121. This is not the case when we apply 
the Borel methods to sequences sIowIy divergent (cf. Hardy [6], p. 364). Hardy 
writes in his Divergent Series: "usually, the delicacy of a method decreases as 
its power increases, and that very powerfill methods, adapted to the summation 
of rapidly divergent series, are apt to fail with divergent series of a less violent 
kind (such as we encounter, for example, in the theory of Fourier series)", It is 
worth noting here that, for a sequence of i.i.d. random variables (X,), the limit 
B,-IimX, = EX, exists almost surely if and only if EIXIIZ < a, so, in the 
classical context of the SLLN, the Borel method is Iess eficient than the Cesdro 
means (cf. [2] and 131). 

When we apply the Bore1 summability methods to non-contractive normal 
operators we can go far away from the unit disc (support of the spectrum of 
a normal contraction) but we have to pay for that by setting some additional 
condition on the spectrum of the operator near the value one. 

Let us now formulate our main result. In the sequel we consider a proba- 
bility space (SZ, 9, p) and a bounded normal operator u acting in L2 (a, 9, u), 
with a spectral measure E, i.e. 

(6) u = 1 ZE (dz) 
d 

for some Borel bounded set A c C. 
Our purpose is to prove the following theorem: 
THEOREM. For a = 2-k and 0 < d < 1, let us deJine a set c C b y  putting 

(7) = { z ;  Re z < 0) u (z; lzl < 1) u ( z ;  ~e z2k < 1 - d l .  

Assume thatfbr the operator (6) we have the inclusion A c D,,, and thqt, for 5~ L2, 

Then the following two conditions: 

and 

are equivalent. 
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Before starting the proof of the theorem, let us begin with some estima- 
tions concerning the Mittag-Leffler function 

which will be a crucial point in all our considerations. The asymptotic behav- 
iour of E, was investigated in the years 1889-1904 by Mittag-LeMer in connec- 
tion with analytic continuations. It has been well known for a long time that 

( 1 1 )  E, (z) - a - l exp (z '1") 

when z + co in the angle 191 < (?t/2)a (cf. [6]). From (11) it follows that, at least 
in the angle 101 < I C / ~ ~ '  l, 

Here and throughout the paper, 5 = (z"), z  E C.  We shall h d  some more specsc 
connections between the functions E,(z) and exp (z1/3, which will make it 
possible to get the estimations of IBa(t, I)(, good enough for our purpose. 

We follow a rather elementary way indicated by Wlodarski [7]. First, we 
note that, for a fixed a = 2-k,  the function 

(as a function of t > 0) satisfies the differential equation 

- L -  - 

f ' ( t ) = g ( t ) + z 2 k f ( t )  with g( t )=  C - 
~ = l  r (vz-g ". 

Consequently, we have 

The substitution zZk t = v leads to the formula 
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where 

zY 
- exp (iOIf"' (z)) . rb" (4 = cz2k v, 1'2" - 

The functions artk1 (2) are determined by fixing the rational power w + w1Izk 
as taking its values in the angle {z = rei8; r 2 0, - ~ / 2 ~ - '  < 8 < ~ / 2 ~ - ' ) .  In 
particular, a\l)(z) = - 1 for Re z < 0, and atk)(l) = 1 for 1 < v < 2k- 1, 
k = 1, 2, ... 

For z = 1, the formula (12) gives - 

(cf. ~71, P. 144). 
We will show using (12) that for 1 = (1, 1, . . .) we have 

Indeed, 

Let us now take the function IB,-r(t, I-l)l. We shall need its estimation only 
in the set 

20 = (lzl < 1) n {Il-zl < a), '\ 

where a can be taken small enough to have mik) (2) = I, v = 1, . . ., 2k - 1, 
and ~ez'" > 0 for z€Zo. For ZEZ*, by (12) applied both to zk and 1, we 
obtain 

2k- 1 1 k-ldU- j e - ~ U ~ Z - k - l  
du] . 
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We have 

(expl-t(1 -z2k))- 11 < Ct 11 -zZkl < Ct 11 -21. 

Indeed, since Re zZk < 1, 

Moreover, if z is a complex number with 0 < Argz < ~ / 2 ,  4 G lzl < 1, and 
- 

a >  - 1, then 

with some 0 < yo < and C > 0. We omit a standard proof. It can also be 
found in [7]. 

In consequence, since for 1 < v < 2-k and t > 2 

by (14) and (15), we get 

for some 0 < y < 4 and C > 0. 
The function IB2-k(t, r)l will be estimated separately in several parts of the 

set D,,, (defined in (7)). Take 

(1 7) GI = {z ;  ~ e z ~ "  < l-d}. 

Let us notice that, for Rez < 1, t > 1, and /3 > - 1, we have the inequality 

(18) . let("-') j ufle-" dul < lztlflfl max (e-', e-t('-Re3 
[O,ztI 

1 

(we omit a rather standard proof). 
To avoid trivial complications in writing the formula, we estimate IB,-*(t, 01 

on the set GI n A, where A a fixed bounded set. Then, by (13) and (18), we get 

for z E GI n A and t large enough (the constant C depends only on A). 
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Take 

(20) GZ = (Re z2' > 1 - d )  n 1) n {Re z > 0) 

For z E G2, we have the estimation 

Indeed, writing z c rei8 for z E G2, we have 101 < n/Zk+ l .  Thus 

Re z2k = rZk cos 2ktl 6 r cos 0 = Re z. - 

! Moreover, if lzl < 1, then we can see that 1 - Re z 2 4 11 -21'. Consequently, for 
Z E  G2 we get 

and (21) follows. 
Take G ,  = {Re z < 0). We shall show that 

t 22) IBz-k ( t ,  01 < C e p t  for z E Gj. 

Indeed, taking the Borel transform B ,  = B,o for 5 = (zn) with Re z < 0, we have 
Bl (t, [) = e-'('-* , SO 

I 

I (23) l&(ty 01 < e-t. 

I 
! 

Taking on both sides of (23) the k-th iteration of the transformation 
j W defined in (4) and using the positivity of W and (5) we easily get (22). 

I 
1 4 PROOF OF THE THEOREM 

Now we are in a position to prove our theorem. We split the proof in two 
steps. 

PROPOSITION 1. Let 0 < d < 1 and o: = 2-k .  Let A be an arbitrary bounded 
Borel subset of D , , ,  where Da,d is defined by  (7). Let us consider a normal 
operator of,the f o m  (6). Assume that a vector 5 E L2 satisfies the condition (8), 
i.e. 

where Ft (.) = ( E  (-) t , t) . 
For x = (uv [)),m= *, let us put 

Then 6, + 0 p-a.s. 
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Proof. We shall show that r=, 116,,112 < 00. Let us write 

By (13) and (16), we can write 

for z~{lzl  < I )  n (11-zl < a} with a small enough. 
To avoid trivial complications in writing the sums (En: instead of x, for 

a suitable no) we shall neglect the fact that the estimation (16) and, consequent- 
ly, (24) is valid for a small enough, i.e. for 11 -21 < 2-" with n large enough. 

Let us note that, by (19), (211, (22), putting 

(25) Y = A n {z; 11 -21 > 2-7- n G2, 

we have 
m m 

Let m(z) be a positive integer such that 

1 - 1 2 )  Q 1 and 11 - z1 2m(2)+ > 1 . 

Put 

To get 2 lldnl12 < m it is enough to show that the function g is integrable with 
respect to FJdz). Obviously, the function gl is bounded. The function g2 is 
integrable with respect to FS(dz). Indeed, since e" 2 or for or > 0, we have 

Consequently, putting h (2) = ~mm=n(z l+  2-" 11 -zt-l, we get 
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But h (z) = 11 -21-l 2 - 'm(z )+1)~m 2-' < 1 by the choice of rn(z), so the inte- 
grability of g2 follows from fde'ioadition (8). Thin completes the pmof. E+ 

PROPOSITION 2. Let us fx a = 2-k  and 0 < d < 1. Let A, Dard, u,  E ,  { be 
suck as in Proposition 1. Let us write briefly 

C, = B, -k jn, r )  with 5 = ( z * ) ~ ~ ~ ,  
M 

C , = B 2 - r ( n , x )  with X = ( U ~ { ) ? = ~ .  

Then 

c,, = max 1C2,, + ,,, - C2"1 + 0 p a s .  
- 

1QrnQ2n 

Proof. Put 

= c2n+m-c~fi. 
Let us write m in the form 

I The standard dyadic expansion method leads to the formula 

for suitable j,'s, where 

with 

K ? ~ ( Z )  = CZn+ j2n-r (2)- C2n+ti- 1)2n-r(2) for r = 1, . . ., n; j = 1 ,  . . ., 2'. 

Thus, we can write 
n 

where the maximum is taken over a11 vectors GI, . . . , j,,) with different entries in 
(1, ..., 2"). 

Consequently, we get 

n n n 2' 

< max C (H$)(2r2 r-2 < 2 r 2  lH$j$2 
tilr .... jn) ,= 1 r = l  r = l  j=l 
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and, finally, 

We shall show that 

(26) C ll~n1I2 < 
n 

Putting 
m, = 2"+(j- 1)2"-', 

- 
m2=2"+j2"-', r = l , . , , ,  n ,  j= l ,  ..., zr, 

we can write 
K?: = cm, - C,, . 

We estimate C,, - C,, on several parts of A getting in this way the estimation 
of 

llHg;l12 = j lC,,(z~-Cm, (2)l2 dFr(z). 
A 

From (19) and (22) it follows immediately that 

where T = (Rez Q 0) u ( ~ e z ~ ~  Q 1-d). 
Indeed, for Z E  T we have, by (19) and (22), 

IK!$ (z)I2 = lCmz (2) - C,,,, (z)I2 < C exp (-d2"). 

Consequently, 

Thus, to prove (26) it is enough to show that 

where S = {lzl Q l ) n ( ~ e z ~ ~ >  1 -d )n (Rez  >0). 
In this case the estimation should be such more delicate. Let us introduce 

the following notation: 

Here the function atk)(z) is the same as in the formula (12). 
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I Then, in particular, we have Zk C, = $,fit and, consequently, 
I 

Let us notice that, for t l  < tz  and ZES, considering the integral 
exp (-3 (1 - z2")) ds, we get easily 

$2 

(29) I c $ ~ ~ - $ ~ , ~  < l1-zZk~ Sexp(-s(l-~ez'5)ds 
$1 

d C]1-zl(t2-tl)exp(-t1(1-~ez'~)) .  - 
I 

I In particular, for Z E S  we have 

Indeed, 

exp (- t ,  (1 - ~e z2k)) 4 
1 

tl (1 - ~e zZk)' 

But, for z = reie E S we have (81 < 7 ~ / 2 ~ +  l ,  SO FtezZk = rgk cos 2k 0 G r cos 0 = Re z. 
Since 121 < 1, we also have 1 -Re2 2 6 11 -z12. Thus, for z E S, 1 - Re z2" 2 
2 1 - Re z 3 4 11 - zI2 and, consequently, (29) impIies 

I 
We are going to estimate fit,(z)-fltl (z) for ZES. In particular, we have 
< 121 < 1 and Arg z E (0, ,742). 

Let us put 

We shall often omit the indices writing q instead of vP), when it is clear. We 
can write ' 

2k- 1 

Bt, (2) - Bt,  (2) = C c)tz) [ j qt '  du - J cpP' du]. 
v = 1  [O ,z2"t21 [O,zZk~ll 

By (15), for t > 2, 

with some C > 0 and 0 < y < f. 
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Thus, 

Finally, since l ~$~ ) ( z ) l  = 1, we get easily the estimation 

(31) 18 t2 (z l -Bt l (~11~Cexp~-~ t~ )  for z ~ G z .  
I 

I 

I 
Since 2k C,  = r p t f l ,  and, by (15'), fl, is bounded, we get one more estimation 

Let us write 

Let us put 

and note that by (8) the measure Ft(dz) = I1 - ~ l - ~ F ~ ( d z )  is finite on S. 
By (28) and (321, we have 

By (30) and (31), we obtain 
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By (31) and (321, we get 

n - r  

< C2-'" k C = 1 22k Ft (zk) + c exp (- )f27. 

Now it is rather easy to check that 

Since 

it is enough to estimate the sum 

We have 

 oreo over, we have 0, < C E ~ = ,  ~ ~ = , ~ t ( ~ ) ~ : = n - k r 2  2-r. Since ;2-' < 2-"', 
for r large enough we can write 

7 - PAMS 22.1 
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m n n - r  m n- 1 n - k  

which completes the proof of Proposition 2. 

P r o  of of the Theorem. The Theorem follows immediately from Prop- 
ositions 1 and 2. 

5. FINAL REMARKS 

From the proof of the Theorem it is clear that the condition (8) can be 
dropped in the case when 11 - zl 6 C 11 -Re zl for z E d near 1. It has a simple 
geometric interpretation: near 1 the set A is situated in the angle (I +reie; 
r 2 0, 119-7cl < c < n/2). In particular, this is the case when u is self-adjoint, 

1 

~ = J , I E ( ~ A )  with -oo < a <  1. 
0 

We did not manage to show the necessity of the condition (8). It seems to be 
probable that (8) can be replaced by the weaker assumption 

dF z 
'( < m with some 0 < f l <  2. J -  

Izl<i IT-zIP 
Concluding the paper let us remark that the Bore1 methods of summabili- 

ty are also very efficient in the case of the uniform convergence (in operator 
norm) for not necessarily normal operators. As an example Iet us formulate the 
following simple result. 

Let u be a bounded linear operator acting in a Hilbert space and let 
u = a+ib be its decomposition into real and imaginary parts. Assume that 
a < 1-6  for some 6 > 0 (b is arbitrary). Then, for x = (~43, we have 

((B1(t, x)(( -+ 0 as t + a. 

Indeed, 

By the Trotter-Lie product formula, 

exp(t [(a- I )  + ib]) = lim 
n+ m 



Indiuidual er~odic  theorem 99 

Consequently, we get 

, lm exp -(a-I) = e - * ' + O  as t - m .  IIBI e,  HI < TI/ (' n )(In 
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